Lecture 1: Real World Problems and Differential Equations

Goals lecture of this lecture:

To get a brief idea of how real world problems are converted into equations;
 To be convinced that real world problems can be formulated into equations consisting of derivatives (Differential equations)

Goals of Math 3310

Overview on some commonly used methods for analytic solutions (Can be used to get a rough initial guess of the solution) Modern numerical methods for the approximation of solutions

Main idea

Real world problems

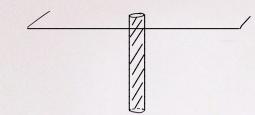
Main tasks of Applied Mathematics

Rules + physical phenomenons + problem requirements (Mathematicians communicate with "customers")

> Mathematics formulation (e.g. infinitesimal analysis, energy minimisation)

> > Solving differential equations (Main goal of Math 3310)

Example 1: Elastic bar



Goal: Model the displacement u(x) of the elastic bar at each position x under gravity.

(Elastic bar hanged vertically under gravity)

Talk to "customers" (physicists):
Force :
$$C(x) \frac{du}{dx}(x)$$

 $force : C(x) \frac{du}{dx}(x)$
 $force : C(x) \frac{du}{dx}(x)$
 $force : C(x + \Delta x) \frac{du}{dx}(x + \Delta x)$
 $force : C(x + \Delta x) \frac{du}{dx}(x + \Delta x)$

Force I = gravitational force = $p(\Delta X \alpha)$ density density At equilibrium state, all forces will be balanced.

$$c(x + \Delta x) \frac{du}{dx} (x + \Delta x) - c(x) \frac{du}{dx} (x) + (p(x)\Delta x \alpha) g = 0$$
Turn this formulation into an equation by dividing both sides by Δx and take $\Delta x \to 0$.

$$\int \lim_{\Delta x \to 0} \frac{c(x + \Delta x) \frac{du}{\Delta x} (x + \Delta x) - c(x) \frac{du}{dx} (x)}{\Delta x} + p(x) \alpha g = 0$$
or
$$\int \lim_{\Delta x \to 0} \frac{c(x) \frac{du}{dx}}{x + \Delta x} - c(x) \frac{du}{dx}}{x} + p(x) \alpha g = 0$$

$$\int \frac{dx}{dx} (\frac{c(x) \frac{du}{dx}}{x + \Delta x}) + p(x) \alpha g = 0$$

$$\int \frac{dx}{dx} (\frac{c(x) \frac{du}{dx}}{x + \Delta x}) = c(x) \frac{du}{dx} = 0$$

$$\int \frac{dx}{dx} (\frac{c(x) \frac{du}{dx}}{x + \Delta x}) = p(x) \alpha g$$

$$\int \frac{du}{dx} (\frac{du}{dx}) = p(x) \alpha g$$

$$\int \frac{du}{dx} (\frac{du}{dx}) = \frac$$

2

Is a differential equation enough to determine the solution?

Consider a simple case. Let
$$C(x) \equiv 1$$
 and $f(x) = x^2 + 1$
Then:
 $-\frac{d}{dx} (C'(x) \frac{d}{dx} u(x)) = x^2 + 1$
 $\int -\frac{d}{dx} (\frac{d}{dx} (x)) dx = \int (x^2 + 1) dx$
 $\int -\frac{du}{dx} = \int \frac{x^3}{3} + x + C$
 $-u(x) = \frac{x^4}{12} + \frac{x^2}{2} + (x + D)$

Solution cannot be determined as it involves two unknown variables. Need more conditions! What if we know u(o) = u(1) = o (fixing the two end points) $u(x) = -\frac{x^4}{2} - \frac{x^2}{2} - Cx - D$ Then: $\Rightarrow \mathcal{U}(\circ) = -\mathcal{D} = \circ \Rightarrow \mathcal{D} = \circ$ $U(1) = -\frac{1}{12} - \frac{1}{2} - C = 0 = C = -\frac{7}{12}$: $U(x) = -\frac{x^4}{12} - \frac{x^2}{2} + \frac{7}{12}$ (unique sol)

What if we know:
$$u(0) = 0$$
 and $\frac{du}{dx}\Big|_{x=1} = 0$.
Then: $u(x) = -\frac{x^4}{12} - \frac{x^2}{2} - Cx - D$
 $\frac{du}{dx}(x) = -\frac{x^3}{3} - x - C$
 $\Rightarrow u(0) = -D = 0 \Rightarrow D = 0$
 $\frac{du}{dx}(1) = -\frac{1}{3} - 1 - C = 0 \Rightarrow C = -\frac{9}{3}$.
 $u(x) = -\frac{x^4}{12} - \frac{x^2}{2} + \frac{9}{3}x$ (Unique solution)

-

To determine a unique solution, we need more conditions! (Need to ask "customers" what happens on the boundaries.)

A. Dirichlet: U(0) = C, and U(1) = C2 (Does NOT involve derivatives)

B. Dirichlet + Neumann :

$$u(o) = C_1$$
 and $C(x) \frac{du}{dx}\Big|_{x=1} = C_2$
(Neumann = involves derivatives)

Example 2: (Smooth approximation of unsmooth measurement)
Goal: Given a function (measurement)
$$W: [0,1] \rightarrow IR$$
, which is
Unsmooth. Find a smooth approximation $U: [0,1] \rightarrow IR$ of W ,
such that $U(0) = W(0) = 0$.
Rule: Unsmooth means $\left\lfloor \frac{du}{dx} \right\rfloor$ is big!
Mathematical formulation: (X)
Find $u: [0,1] \rightarrow IR$ with $U(0) = 0$ such that:
 $J(u) = \int_{0}^{1} \left\lfloor \frac{du}{dx} \right\rfloor dx + \int_{0}^{1} (U(x) - W(x))^{2}$ is minimized
 $\int \left(\frac{du}{dx}\right)^{2} + \frac{e^{2}}{4}$
 $U(x)$ is close to $W(x)$
(good approximation)
Smoothwess

How to solve (X)? ?? We haven't learnt minimization over function u(x) !! ?? A smart trick : Suppose u is the minimizer of J. Add u(x) by any small pertubation $v : [0, 1] \rightarrow IR$ with v(0) = 0to get a new function $u + tv : [0,1] \rightarrow IR$ (for $t \in IR$). Note that (u + tv)(o) = u(o) + tv(o) = o(i satisfies the condition) Let $G(t) \stackrel{\text{def}}{=} J(u+tv) = \int_{0}^{1} \left[\frac{d}{dx} (u+tv) \right]_{+}^{2} + \varepsilon^{2} dx + \int_{0}^{2} [(u+tv) - w] dx$ Then: G: IR -> IR depends on telR.

In particular,
$$G(o) = J(u) = \min \min of J$$
.
G attains minimum at $t=0$. $\therefore \frac{dG}{dt}\Big|_{t=0} = G'(o) = 0$.
 $\therefore \frac{d}{dt}\Big|_{t=0} = 0 = \frac{d}{dt}\Big|_{t=0} \left(\int_{0}^{t} \left(\frac{d}{dx} (u+tv) \right)^{2} + \varepsilon^{2} dx + \int_{0}^{t} \left[(u+tv) - \omega \right]^{2} dx \right)$
 $= \int_{0}^{t} \frac{\left(\frac{du}{dx} + t \frac{dv}{dx} \right) \frac{dv}{dx}}{\int \left(\frac{d}{dx} (u+tv) \right)^{2} + \varepsilon^{2}} \Big|_{t=0} dx + 2 \int_{0}^{t} \left(u+tv - \omega \right) v \Big|_{t=0} dx$
 $= \int_{0}^{t} \frac{\left(\frac{du}{dx} \right) \left(\frac{dv}{dx} \right)}{\int \left(\frac{du}{dx} \right)^{2} + \varepsilon^{2}} dx + 2 \int_{0}^{t} (u-\omega) v dx$

$$\int_{0}^{1} \frac{dG}{dt} \Big|_{t=0} = \int_{0}^{1} \frac{\left(\frac{du}{dx}\right)\left(\frac{dv}{dx}\right)}{\int \left(\frac{du}{dx}\right)^{2} + \varepsilon^{2}} dx + 2 \int_{0}^{1} \left(u - \omega\right) v dx$$

$$= \int_{0}^{1} - \frac{d}{dx} \left(\frac{\left(\frac{du}{dx}\right)}{\int \left(\frac{du}{dx}\right)^{2} + \varepsilon^{2}}\right) N(x) dx + \frac{\left(\frac{du}{dx}\right) v(x)}{\int \left(\frac{du}{dx}\right)^{2} + \varepsilon^{2}} \Big|_{x=0}^{x=0}$$

$$+ 2 \int_{0}^{1} \left(u(x) - w(x)\right) V(x) dx$$
Since $v(x)$ is arbitrary, we take $v(x)$ such that
$$v(0) = v(1) = 0.$$
Then:
$$\int_{0}^{1} \left(-\frac{d}{dx}\left(\frac{\left(\frac{du}{dx}\right)}{\int \left(\frac{du}{dx}\right)^{2} + \varepsilon^{2}}\right) + 2\left(u(x) - w(x)\right)\right) J(x) dx = 0$$
for all $v(x)$.

Rule: If
$$\int_{0}^{1} f(x) g(x) dx = 0$$
 for all $g(x)$ with $g(0) = g(1) = 0$.
then $f(x) = 0$.
 $\int_{1}^{1} f(x) g(x) = 0$
 $\Rightarrow \int_{0}^{1} (f(x))^{2} dx = 0 \Rightarrow f(x) = 0$
In our case,
 $\int_{0}^{1} \left[-\frac{d}{dx} \left(\frac{\left(\frac{du}{dx} \right)}{\int \frac{du}{dx} \right)^{2} + \epsilon^{2}} \right) + 2\left(u(x) - w(x) \right) \right] v(x) dx = 0$
for all $v(x)$.
 $\Rightarrow -\frac{d}{dx} \left(\frac{\left(\frac{du}{dx} \right)}{\int \frac{du}{dx} \right)^{2} + \epsilon^{2}} \right) + 2\left(u(x) - w(x) \right) = 0$
 $(Differential equation)$

and the second second

a contract of the second s

