Lecture 1: Real World Problems and Differential Equations

Goals lecture of this lecture:

1. To get a brief idea of how real world problems are converted into equations; 2. To be convinced that real world problems can be formulated into equations consisting of derivatives (Differential equations)

Goals of Math 3310

verview on Some Modern numerica commonly used methods methods fo (Can be used to get ^a rough initial guess of the Solution)

commonly used methods methods for the approximation

Main idea

Real world problems

Main tasks of Applied lathematic

 $\left\langle \right\rangle$

Rules + physical phenomenons + problem requirements (Mathematicians communicate with "customers")

> Mathematics formulation (e.g. infinitesimal analysis, energy minimisation)

> > Solving differential equations (Main goal of Math 3310)

Example 1: Elastic bar

Goal: Model the displacement $u(x)$ of the elastic bar at each position x under gravity.

(Elastic bar hanged vertically under gravity)

Table to "customers" (physicists):

\nForce:
$$
CLx
$$
 $\frac{du}{dx}(x)$

\n $=$ ρ (dx)

\n $=$ ρ (dx)

\nArea: LAx

\nForce: $2 \cdot CLx + \Delta x$

\nForce: $\frac{du}{dx}(x + \Delta x)$

\nArea: $CLx + \Delta x$ $\frac{du}{dx}(x + \Delta x)$

Force ^I ⁼ gravitational force ρ (Δ χ α)
 \sim \sim $\frac{1}{x}$ areas - sectional are At equilibrium state, all forces will be balanced.

G

$$
C(X+\Delta X) \frac{du}{dx}(x+dx) - C(x) \frac{du}{dx}(x) + (p(x)\Delta X a) g = o
$$
\nTurn this formulation into an equation by dividing both sides by ΔX and take $\Delta X \rightarrow o$.
\n
$$
\lim_{\Delta X \rightarrow o} \frac{C(x+\Delta x) \frac{du}{dx}(x+\Delta x) - C(x) \frac{du}{dx}(x)}{\Delta x} + p(x) ag = o
$$
\n
$$
o \cdot \left[\lim_{\Delta x \rightarrow o} \frac{C(x) \frac{du}{dx}|_{x+\Delta x} - C(x) \frac{du}{dx}|_{x}}{\Delta x} \right] + p(x) ag = o
$$
\n
$$
o \cdot \frac{d}{dx} \left[\lim_{\Delta x \rightarrow o} \frac{C(x) \frac{du}{dx}|_{x+\Delta x}}{\Delta x} \right] + p(x) ag = o
$$
\n
$$
\frac{d}{dx} \left(\frac{d}{dx} \right) \frac{du}{dx} = \frac{C(x) \frac{du}{dx}}{\sqrt{x}} \left[\lim_{\Delta x \rightarrow o} \frac{C(x) \frac{du}{dx}}{\sqrt{x}} \right]
$$
\n
$$
\Rightarrow \frac{d}{dx} \left(C(x) \frac{du}{dx} \right) = P(x) \Delta g \qquad \text{(Differential equation!)}
$$

 $\overline{\bullet}$

Is a differential equation enough to determine the solution?

Consider a simple case. Let
$$
C(x) = 1
$$
 and $f(x) = x^2 + 1$
\nThen:
\n
$$
-\frac{d}{dx}(C(x))\frac{d}{dx}(x) = x^2 + 1
$$
\n
$$
\int -\frac{d}{dx}(\frac{d}{dx}(x))dx = \int (x^2 + 1) dx
$$
\n
$$
\int -\frac{du}{dx} = \int \frac{x^3}{3} + x + C
$$
\n
$$
-u(x) = \frac{x^4}{1^2} + \frac{x^2}{2} + Cx + D
$$

Solution cannot be determined as it involves two nknown Variables. Need more conditions!

What if we know $u(0) = u(1) = 0$ (fixing the two end points) $u(x) = -\frac{x^4}{12} - \frac{x^2}{2} - cx - D$ Then: \Rightarrow $u(\circ) = -D = 0 \Rightarrow D = 0$ $U(1) = -\frac{1}{12} - \frac{1}{2} - C = 0 \Rightarrow C = \frac{-7}{12}$ i. $U(x) = \frac{x^4}{2} - \frac{x^2}{2} + \frac{7}{2}$ (unique sol)

What if we know: $u(0) = 0$ and $\frac{du}{dx}\Big|_{x=1} = 0$. Then: $u(x) = -\frac{x^4}{12} - \frac{x^2}{2} - cx - D$ $\frac{du}{dx}(x) = -\frac{x^3}{2} - x - C$ \Rightarrow $u(0) = -D = 0 \Rightarrow D = 0$ $\frac{du}{dx}(1) = -\frac{1}{5} - 1 - C = 0 \Rightarrow C = -\frac{9}{5}$ i. $U(x) = -\frac{x^4}{12} - \frac{x^2}{2} + \frac{4}{3}x$ (Unique solution)

To determine a unique solution, we need more conditions! (Need to ask "customers" what happens on the boundaries.)

A. Dirichlet: $U(\circ) = C_1$ and $U(1) = C_2$ (Does NOT involve derivatives)

B . Dirichlet ^t Neumann :

$$
U(0) = C_1
$$
 and $C(X) \frac{du}{dx}|_{X=1} = C_2$
\n(Nenumann = involves derivative₃)

Example 2:	(Smooth approximation of unsmooth measurement)	
Goal:	G_i given a function (measurement)	$W: [0,1] \rightarrow \mathbb{R}$, which is unsmooth. Find a smooth approximation $U: [0,1] \rightarrow \mathbb{R}$ of W , such that $U(0) = W(0) = 0$.
Rule:	Unsmooth means $\left \frac{du}{dx}\right $ is big!	
Mathematical formulation:	(*)	
Find $U: [0,1] \rightarrow \mathbb{R}$ with $U(0) = 0$ Such that:		
$\overline{J}(U) = \int_{0}^{1} \left \frac{du}{dx}\right dx + \int_{0}^{1} (U(X) - W(X)) \right $ is minimized		
$\frac{S}{\sqrt{dx}} = \frac{S}{\sqrt{(\frac{dw}{dx})^2 + \frac{e^2}{\sqrt{(\frac{dw}{dx})^2}}}}$		
Example 2:	W(0) = 0	
W(1) = 0	W(2) = 0	
W(2) = 0	W(3) = 0	
W(4) = 0	W(5) = 0	
W(6) = 0	W(7) = 0	
W(8) = 0	W(9) = 0	
W(9) = 0	W(10) = 0	
W(11) = 0	W(2) = 0	
W(3) = 0	W(4) = 0	
W(5) = 0	W(6) = 0	
W(6) = 0	W(8) = 0	
W(

How to Solve (*)? ? We haven't learnt minimization over function ucx) !!?? A smart trick : Suppose u is the minimizer of J. λ dd UIX) by any small pertubation $v: [0,1] \to \mathbb{R}$ with $v(\mathfrak{o}) = 0$ action $u + cv + 2c$
 u) (0) = $u(0) + cv(6) = 0$

isfies the condition)
 $u + tv$) = $\int_{0}^{1} \sqrt{\frac{d}{dx}(u+v)^{2} + z^{2}} dx$ to get a new function $u+tv: [0,1] \to \mathbb{R}$ (for $t \in \mathbb{R}$). $\begin{array}{ccc} \n\sqrt{16} & +\sqrt{16} & \sqrt{16} & +\sqrt{16} & \sqrt{16} & \sqrt$ $\overline{\mathcal{O}}$ of $\overline{\mathcal{O}}$ of $\overline{\mathcal{O}}$ (i) satisfies the condition) $Let G(t) \stackrel{def}{=} J(u+t\upsilon) = (\frac{d}{dx}(u+t\upsilon))^2 + \epsilon^2 dx + \int_0^1 (u+t\upsilon)^{-\omega}dx$ $|$ hen: $G : \mathbb{R} \rightarrow \mathbb{R}$ depends on $t \in \mathbb{R}$.

In particular,
$$
G(\omega) = J(u) = \min_{\text{min}} \omega \text{ of } J
$$
.
\n
$$
\therefore G_{\text{in}} \text{ attains } \text{minimum at } t = 0 \quad \therefore \frac{dG}{dt}\Big|_{t=0} = G'(\omega) = 0
$$
\n
$$
\therefore \frac{d}{dt}\Big|_{t=0} G(t) = 0 = \frac{d}{dt}\Big|_{t=0} \left(\int_{0}^{1} \frac{d}{dx}(u+tv) \, dt + \int_{0}^{2} \left[(u+tv) - \omega \right]^{2} dx \right)
$$
\n
$$
= \int_{0}^{1} \frac{\left(\frac{d}{dx}(u+tv) \right)^{2} + \epsilon^{2}}{\sqrt{\frac{d}{dx}(u+tv) + \epsilon^{2}}} \Big|_{t=0} dx + 2 \int_{0}^{1} (u+tv - \omega) v \Big|_{t=0} dx
$$
\n
$$
= \int_{0}^{1} \frac{\left(\frac{d}{dx}(u+tv) \right)^{2} + \epsilon^{2}}{\sqrt{\frac{d}{dx}(x^{2} + \epsilon^{2})}} dx + 2 \int_{0}^{1} (u - \omega) v dx
$$

$$
\int_{0}^{1} \frac{\log \frac{d\zeta}{\omega t}}{\left(\frac{d\zeta}{\omega t}\right)^{2}} \int_{0}^{1} \frac{\left(\frac{d\zeta}{\omega x}\right)\left(\frac{d\zeta}{\omega x}\right)}{\left(\frac{d\zeta}{\omega x}\right)^{2} + \xi^{2}} d\zeta + 2 \int_{0}^{1} (u - \omega) \omega dx
$$
\n
$$
= \int_{0}^{1} - \frac{d}{\omega x} \left(\frac{\left(\frac{d\zeta}{\omega x}\right)}{\left(\frac{d\zeta}{\omega x}\right)^{2} + \xi^{2}}\right) \omega(x) dx + \frac{\left(\frac{d\zeta}{\omega x}\right) \omega(x)}{\left(\frac{d\zeta}{\omega x}\right)^{2} + \xi^{2}} \left(\frac{u}{\zeta^{2}}\right)^{2} + \xi^{2} \left(\frac{u}{\zeta^{2}}\right)^{2} + \xi
$$

Rule: If
$$
\int_{0}^{1} f(x) g(x) dx =0
$$
 for all $g(x)$ with $g(0) = g(1) =0$
\nthen $f(x) = 0$.
\nLet $g(x) = f(x)$. Then: $\int_{0}^{1} f(x) g(x) = 0$
\n $\Rightarrow \int_{0}^{1} (f(x))^{2} dx = 0 \Rightarrow f(x) = 0$
\nIn our case,
\n
$$
\int_{0}^{1} \left[-\frac{d}{dx} \left(\frac{(\frac{d^{u}}{dx})}{\sqrt{\frac{d^{u}}{dx^{2}}}} + \frac{2(u(x) - w(x))}{r} \right) v(x) dx \right] = 0
$$
\n
$$
\Rightarrow -\frac{d}{dx} \left(\frac{(\frac{d^{u}}{dx})}{\sqrt{\frac{d^{u}}{dx^{2}}}} + \frac{2(u(x) - w(x))}{r} \right) = 0
$$
\n(Differential equation)

